
Trends in

Neurosciences OPEN ACCESS
Review
The neuropathogenesis of highly pathogenic
avian influenza H5Nx viruses in mammalian
species including humans
Lisa Bauer,1,3 Feline F.W. Benavides,1,3 Edwin J.B. Veldhuis Kroeze,1 Emmie deWit,2 and Debby van Riel 1,*
Highlights
Highly pathogenic avian influenza (HPAI)
H5Nx viruses can cause neurological
complications in many mammalian
species, including humans.

Neurological disease induced by HPAI
H5Nx viruses in mammals can manifest
without clinical respiratory disease.

HPAI H5Nx viruses are more neuro-
pathogenic than other influenzaA viruses
in mammals.
Circulation of highly pathogenic avian influenza (HPAI) H5Nx viruses of the
A/Goose/Guangdong/1/96 lineage in birds regularly causes infections of mammals,
including humans. In many mammalian species, infections are associated with
severe neurological disease, a unique feature of HPAI H5Nx viruses compared
with other influenza A viruses. Here, we provide an overview of the neuro-
pathogenesis of HPAI H5Nx virus infection in mammals, centered on three aspects:
neuroinvasion, neurotropism, and neurovirulence. We focus on in vitro studies, as
well as studies on naturally or experimentally infected mammals. Additionally, we
discuss the contribution of viral factors to the neuropathogenesis of HPAI H5Nx
virus infections and the efficacy of intervention strategies to prevent neuroinvasion
or the development of neurological disease.
Severe neurological disease in mammals
is related to the neuroinvasive and neuro-
tropic potential of HPAI H5Nx viruses.

Cranial nerves, especially the olfactory
nerve, are important routes of neuro-
invasion for HPAI H5Nx viruses.

HPAI H5Nx viruses have a broad neuro-
tropic potential and can efficiently infect
and replicate in various CNS cell types.

Vaccination and/or antiviral therapy
might in part prevent neuroinvasion
and neurological disease following
HPAI H5Nx virus infection, although
comprehensive studies in this area are
lacking.
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Emergence and circulation of H5Nx viruses
HPAI H5Nx viruses of the A/Goose/Guangdong/1/96 (Gs/Gd) lineage emerged more than 25 years
ago andwere first isolated from domestic geese in 1996 [1]. Shortly thereafter, the first human infec-
tion was documented [2], and since then, a total of 868 human cases have been detected, of which
457 were fatali. The phylogenetic tree of the Gs/Gd lineage is based on the sequence of the trimeric
surface protein hemagglutinin (HA)ii [3]. The extensive circulation and continuous evolution of H5N1
viruses led to a diversification of the HA protein, resulting in multiple clades and subclades, of which
subclade 4.3.3.2b is currently spreading worldwide via wild birds [4,5]. Additionally, reassortment
(seeGlossary) events have occurred, which led to the exchange of non-HA gene segments between
viruses. This resulted in local circulation of, for example, H5N6 or H5N8 viruses, which are all de-
scendants of the ancestral Gs/Gd isolate that emerged in 1996 [6–9]. In this review, we refer to
the Gs/Gd lineage viruses as HPAI H5Nx viruses.

Prior to 2005, HPAI H5Nx viruses were predominately circulating in poultry species in Asia, with
incidental spillovers to migratory birds resulting in local outbreaks without sustained transmission
within wild birds year-round [9]. Since 2021, HPAI H5Nx viruses, specifically from clade 2.3.4.4b,
have been circulating continuously in wild birds with intercontinental detections in Asia, Africa,
Europe, North America, and South America, resulting in massmortalities in different wild bird spe-
cies [10,11]. In addition, HPAI H5Nx viruses are frequently detected in mammalian species that
feed on sick or dead infected birds. So far, mammal-to-mammal transmission seems rare but
has been suggested in 2003 among tigers [12,13] and recently in minks [14] and sea lions [15].

Neuropathogenesis of H5Nx viruses
A unique feature of HPAI H5Nx viruses is their ability to cause severe neurological disease in birds
and mammals, a feature rarely observed for other influenza A viruses. Neurological complications
Trends in Neurosciences, November 2023, Vol. 46, No. 11 https://doi.org/10.1016/j.tins.2023.08.002 953
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0001-9753-3564
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tins.2023.08.002&domain=pdf
https://doi.org/10.1016/j.tins.2023.08.002
http://creativecommons.org/licenses/by/4.0/
CellPress logo


Trends in Neurosciences
OPEN ACCESS

Glossary
Neuroinvasion: the ability of a virus to
enter either the PNS or CNS.
Neurotropism: the ability of a virus to
infect and replicate in cells of the
nervous system. Cells of the nervous
system include neurons, glial cells
(e.g., astrocytes, oligodendrocytes,
oligodendrocyte precursor cells,
microglia), meningeal cells, choroid
plexus cells, and cells of the
neurovascular system (such as
endothelial cells and pericytes).
Neurovirulence: the ability of a virus
infection to cause damage in the CNS
that contributes to the development of
clinical disease of the nervous system
independently of the ability of the virus to
invade the CNS and infect cells of the
CNS.
Reassortment: a characteristic of
multisegmented RNA viruses; refers to
the exchange of viral gene segments in
cells coinfectedwith at least two different
viruses to produce virus progeny with a
novel genome combination.
Synaptic plasticity: refers to the ability
of synaptic connections to strengthen or
weaken over time, which is an important
neurophysiological process supporting
learning, memory, and other cognitive
functions.
are the most common clinical manifestations in naturally infected mammals, although one could
argue that this may be due to the ease of observation of neurological versus respiratory
symptoms. However, studies from experimentally infected mammals show that neurological
complications occur more frequently after HPAI H5Nx virus infection than infection with low
pathogenic avian influenza (LPAI), seasonal or pandemic influenza A viruses [16,17]. To date,
neurological disease has been reported in many mammalian species, including humans, foxes,
cats, tigers, stone martens, harbor porpoises, common seals, gray seals, ferrets, mice, pikas,
and minks [11]. In this review, we discuss current knowledge on the neuropathogenesis
of HPAI H5Nx virus infections in mammals, focusing on three aspects: neuroinvasion,
neurotropism, and neurovirulence. Although we focus on mammals, we summarize the
neuropathogenic potential of these HPAI H5Nx viruses in birds in Box 1. Last, we outline the
role of viral factors and how these contribute to neuropathogenicity of HPAI H5Nx viruses in
mammals and possible intervention strategies and treatment options in humans.

Neuroinvasion
‘Neuroinvasion’ refers to the ability of a virus to enter the PNS or CNS [18]. Influenza A viruses
initially infect cells within the respiratory tract and from there can spread to the CNS. Possible
pathways include virus transport within or along cranial nerves (CNs) (Figure 1A,B) or hematoge-
nous spread, after which it may cross the blood–brain barrier (BBB) or blood–cerebral spinal fluid
barrier (BCSFB). CNs that innervate the mammalian respiratory tract include the olfactory nerve
(CN I; sensory fibers) and trigeminal nerve (CN V; sensory and motor fibers) in the nasal cavity,
the facial nerve (CN VII; sensory, parasympathetic and motor fibers) and glossopharyngeal
nerve (CN IX; sensory and motor fibers) in the upper respiratory tract, and the vagus nerve (CN
X; sensory, parasympathetic and motor fibers) in the lower respiratory tract. Evidence suggests
that HPAI H5Nx viruses can use the olfactory [16,19–30], trigeminal [22–24,27,30,31], facial
[28,31], vestibulocochlear [19,22,27], vagus [22–24], and upper thoracic sympathetic nerves
[23] to enter the CNS in mammals, as virus antigen is detected in the soma and/or axons of sen-
sory neurons of these nerves (Figure 1C).

The nasal cavity is lined by respiratory and olfactory mucosa. The surface ratio of respiratory and
olfactory mucosa differs between mammalian species. In humans, it is estimated that around
Box 1. The neuropathogenic potential of HPAI H5 viruses in birds

Neurological complications are regularly observed in birds infected with HPAI H5Nx viruses. Many species develop
neurological signs, including chickens and turkeys (Galliformes), ducks and geese (Anseriformes), and raptors
(Falconiformes) [167–174]. The neuropathogenicity of HPAI H5Nx viruses differs among avian species. Infection starts in
the respiratory tract and/or gastrointestinal tract, after which the virus can spread to other tissues including the CNS
[174]. The route of neuroinvasion is not well studied in birds. In gallinaceous poultry, HPAI H5Nx viruses have a strong
endotheliotropism, which is not observed in wild birds such as mallard ducks [174]. Infected damaged endothelial cells
may lead to hemorrhages, edema, congestion, and thrombosis [174] and form a likely route of hematogenous virus spread
to the CNS in gallinaceous poultry species. The route of neuroinvasion in bird species without evident endotheliotropism
such as ducks remains to be unraveled. Inside the CNS, various cells of the CNS, including ependymal cells, glial cells, and
neurons, may become infected, demonstrating the virus’ neurotropism. Infected cells produce progeny virus and become
necrotic, which triggers infiltration of inflammatory cells, gliosis, hemorrhages, and edema [174,175], consistent with
encephalitis. Systemic spread and multiorgan virus infection usually induces similar acute necrohemorrhagic lesions, most
notably within lungs, heart, pancreas, and liver. If evident, macroscopic CNS lesionsmay consist of malacia, hemorrhages,
and edema [174,175]. Neurological signs commonly reported include head twitching, ataxia, tremors, torticollis, and
opisthotonos [174,175]. The degree of neurovirulence of HPAI H5Nx viruses depends on the virus and the infected bird
species. For example, natural infection in farmed domestic ducks was shown to result in more severe neurological disease
compared with wild mallard ducks [175]. Furthermore, HPAI H5Nx infection in raptors such as buzzards, falcons, and sea
eagles is associated with severe, often fatal, neurological disease [169,170,172,173]. Since the global spread of HPAI
H5Nx viruses, a wider range bird species has been infected, which resulted in mass mortality in sensitive bird species
[176]. Furthermore, the carcasses of infected birds form a source of infection for opportunistic scavenging terrestrial
and aquatic carnivores.
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Figure 1. Routes of neuroinvasion for highly pathogenic avian influenza (HPAI) H5Nx viruses. (A) The olfactory
pathway includes the olfactory mucosa, which contains olfactory sensory neurons. The ciliated neurons extend into the
nasal cavity, and their axons pass through the cribriform plate and terminate in the olfactory bulb in the brain. (B) The
respiratory pathway includes the respiratory mucosa. Nerve endings of sensory neurons reside behind the tight junctions
of epithelial cells and are not in direct contact with the environment. Their cell bodies are found in ganglia. (C) The
presence of H5N1 virus nucleoprotein antigen is shown in the olfactory pathway and the respiratory pathway in
experimentally infected ferrets. Images adjusted from [30]. Figure created with Biorender.

Trends in Neurosciences
OPEN ACCESS
1.25% of the nasal mucosa consists of olfactory mucosa (2–10 cm2) [32,33], while in mice this is
around 47% [34]. The olfactory mucosa is responsible for odor recognition and comprises
olfactory sensory neurons (OSNs), sustentacular cells, microvillar cells, basal cells, olfactory
ensheathing cells, and cells of the Bowman’s glands [32]. The dendrites of the bipolar OSN
have cilia that are directly exposed to the environment (Figure 1A) [35,36]. Neuroinvasion along
the olfactory nerve starts by viral infection of cells within the olfactory mucosa. Several studies
in mice and ferrets have shown that HPAI H5Nx viruses replicate efficiently in the olfactory
mucosa with virus antigen in all cell types, including OSN [20,29,30]. Infection of OSN can result
in anterograde transport of virus through the cribriform plate of the ethmoid bone into the olfactory
bulb, the brain structure involved in olfaction. In the olfactory bulb, axons of the OSN synapse in
glomeruli with mitral cells and periglomerular cells in the glomerular layer, which have been found
infected in experimentally inoculated ferrets [20,29]. Alternatively, viruses could diffuse through
Trends in Neurosciences, November 2023, Vol. 46, No. 11 955
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continuous, fluid-filled channels created by olfactory ensheathing cells along the olfactory nerve
that are filled with CSF and end up in the meninges [25]. Efficient replication of HPAI H5Nx viruses
in the olfactory mucosa likely contributes to this propensity for neuroinvasion, as seasonal and
pandemic influenza viruses replicate less efficiently in the olfactory mucosa and are less frequently
associated with neuroinvasion along the olfactory nerve [16,37]. Transmission of HPAI H5N1
virus along the olfactory nerve does not result in a genetic bottleneck [30].

Within the respiratory mucosa, nerve endings of the sensory neurons are located directly below
the tight junctions of the respiratory epithelial cells and, unlike OSN endings, are not in direct con-
tact with the environment (Figure 1B). The nerve fibers of the trigeminal nerve innervate, among
others, the respiratory mucosa of the nasal cavity, the nasopharynx, the sinuses, and the palate.
CNS invasion along the trigeminal nerve has been observed in experimentally inoculated mice
and ferrets, where virus antigen was detected in the trigeminal ganglion [20,23,24,29,38]. Evi-
dence for neuroinvasion of HPAI H5Nx viruses along the facial nerve is based on the detection
of virus antigen in the facial nucleus and solitary nucleus in experimentally inoculated mice
and ferrets [22,28,31]. The vestibulocochlear pathway has been implicated in CNS invasion in fer-
rets and mice. In ferrets, HPAI H5Nx virus antigen was detected in epithelial cells of the eustachian
tube [27] and in the cochlea and vestibulocochlear nerve [22]. In intranasally inoculated mice, virus
antigen was detected in vestibulocochlear nuclei [22]. Neuroinvasion along the vagus nerve, of
which sensory nerve terminals are widely distributed throughout the lower respiratory tract, has
been shown in mice [28,38,39].

Hematogenous spread of HPAI H5Nx viruses could result in subsequent CNS entry through the
BBB or BCSFB, but there is little evidence that HPAI H5Nx viruses invade the CNS via this route.
HPAI H5Nx viruses can spread to the circulation (viremia) in both humans and experimentally
inoculated animals [40–43]. In contrast, viremia is not commonly observed during seasonal influ-
enza virus infections in mammals [42,44,45]. To our knowledge, there is currently no evidence for
trans- or paracellular transport of cell-free or cell-associated HPAI H5Nx virus over the BBB or
BCSFB. However, in intragastrically inoculated cats and naturally infected foxes, HPAI H5Nx vi-
ruses have been shown to infect few endothelial cells in the CNS, from where viruses could
spread across the BBB [46,47]. Of note, although in poultry and black swans, endothelial cell in-
fection with HPAI H5Nx viruses is a common observation, endothelial infection in mammals
appears to be rare.

Neurotropism
Neurotropism is the ability of a virus to infect cells of the CNS and replicate in them [18]. Once the
virus invades the CNS, a variety of cell types in the brain can become infected, such as neurons,
glial cells (astrocytes, microglia, oligodendrocytes, and ependymal cells), choroid plexus cells,
neural endothelial cells, and pericytes. The infection efficiency of HPAI H5Nx viruses varies
among the different CNS cell types.

The surface protein HA facilitates attachment to and entry into susceptible cells. The receptor
binding properties of HA determine in part the cell tropism. Avian viruses, for example, preferentially
bind to α(2,3)-linked sialic acids (SIAs), whereas human influenza viruses recognize α(2,6) SIAs (re-
viewed in [48]). While the presence of SIAs in the respiratory tract is well studied [49–51], their pres-
ence in different anatomical locations of the mammalian CNS is largely uncharacterized. The CNS
has a high SIA content, and several studies suggest the presence of both α(2,3)- and α(2,6)-linked
SIAs in mammalian species such as mice, pigs, cats, dogs, and humans (Table 1). SIA distribution
in the CNS of ferrets, one of the most widely used animal models for influenza research, has not
been investigated, to our knowledge.
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Table 1. Distribution of sialic acids in CNS of various mammalsa,c

Species α(2,3)-Sialic acids (MAA) α(2,6)-Sialic acids (SNA) Refs

Areas Cell type Areas Cell type

Mouse Olfactory bulb: Yes
Hippocampus: Yes
Thalamus: Yes
Cerebellum: Yes
Pons: No
Medulla oblongata: No

N, VE, E Olfactory bulb: Yes
Hippocampus: Yes
Thalamus: Yes
Cerebellum: Yes
Pons: Yes
Medulla oblongata: Yes

N, G, VE, E [128]

Cerebrum: No
Cerebellum: Yes

–b Cerebrum: No
Cerebellum: Yes

– [129]

Substantia nigra: Yes
Hippocampus: Yes
Cerebellum: Yes

– Substantia nigra: No
Hippocampus: No
Cerebellum: No

– [130]

Human Cerebral cortex: Yes
Hippocampus: Yes
Brain stem: Yes
Cerebellum: Yes

N, G, VE, E Cerebral cortex: Yes
Hippocampus: Yes
Brain stem: Yes
Cerebellum: Yes

N, G, VE, E [128]

– N, VE – VE [131]

Pig – N – VE [132]

Cat Cerebellum: Yes Cerebellum: Yes [133]

Dog – VE – VE [134]

aIt should be noted that experimental variation between different lectin suppliers is observed and needs critical evaluation [135].
b
–, data not available.

cAbbreviations: E, ependymal cells; G, glial cells; N, neurons; VE, vascular endothelial cells.
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In vitro and in vivo,HPAI H5Nx viruses can infectmany different CNS cell types. In vitro studies showed
that HPAI H5Nx viruses infect and replicate in neuron- and astrocyte-like cells [52,53], in primary
mouse astrocytes and microglia [54,55], and in different human induced pluripotent stem cell
(hiPSC)-derived cell types such as neural progenitor cells, neurons, and astrocytes [56]. These
in vitro studies show efficient infection of CNS cells, based on increasing viral titers in the supernatant
over time. In experimentally inoculated ferrets, mice, and pikas and naturally infected red foxes, cats,
tigers, stone martens, harbor porpoises, common seals, and gray seals, both neurons and glial cells
were infected with HPAI H5Nx virus, based on the detection of virus antigen (Tables 2 and 3)
[13,20,23–28,57–72]. Occasionally, infected ependymal, choroid plexus, and meningeal cells were
observed [19,20,27,61,62,65,71,73]. The detection of virus antigen in different anatomical locations
and the isolation of infectious virus from them (Figure 2) indicate that HPAI H5Nx viruses replicate effi-
ciently within the CNS of mammals [16,74]. However, the replication efficiency and distribution within
the CNS seem to be strain dependent. For instance, while A/HK/483/97 is known to disseminate
throughout the CNS, A/HK/486/97 does not exhibit the same level of spread, despite both strains
being able to invade the CNS [75]. The neurotropism in humans is poorly studied as postmortem
CNS samples are often not collected for various reasons. However, in the few cases described, influ-
enza virus antigen was detected in neurons and glial cells in various areas of the brain such as the ce-
rebral cortex, hippocampus, midbrain, and cerebellum (Table 4) [76–78].

Taken together, after neuroinvasion, HPAI H5Nx viruses can infect and replicate efficiently in
various CNS cell types in different mammalian species. Depending on the route of neuroinvasion,
various cells become exposed, after which the virus possibly disseminates to other regions of the
CNS. The mechanism of HPAI H5Nx virus transmission between cells of the CNS is not well
studied, but it has been shown that transport of HPAI H5Nx virus can occur through transaxonal
Trends in Neurosciences, November 2023, Vol. 46, No. 11 957
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Table 2. Experimentally HPAI H5Nx virus-inoculated mammals in which neuroinvasion and/or neurovirulence has been observedb,c

Strain Species Neuroinvasion Neurotropism Neurovirulence Refs

Inflammatory
response

CNS
lesions

Neurological
signs

A/Hong Kong/156/97 Macaques Yesa No No No No [136]

Mice Yesa N, G –
d Yes – [24,59]

A/Hong Kong/483/97 Mice Yes, ON, TN, VN N, G, S, E Yes Yes Yes [23,24,59,68,75,
118,137]

Ferret Yes, ON No – Yes Yes [31,68,137,138]

A/HongKong/486/1997 Mice Yesa – – – No [68,137]

Ferret Yesa – – Yes Yes [68,137,138]

A/chicken/Hong Kong/YU822.2/2001 Mice Yesa – – Yes Yes [139]

A/chicken/Hong Kong/YU562/2001 Mice No – – – – [139]

A/pheasant/Hong Kong/FY155/2001 Mice Yesa – – – Yes [139]

A/chicken/Hong Kong/FY150/2001 Mice Yesa – – – Yes [139]

A/chicken/Hong Kong/NT873.3/2001 Mice Yesa – – – Yes [139]

A/Hong Kong/213/03 Ferret Yesa – – – – [69]

A/Chicken/Indonesia/7/03 Mice No – – – No [26,68]

Ferret No – – – –

A/Chicken/Vietnam/NCVD/8/2003 Mice No – – – – [68]

A/Chicken/Korea/ES/2003 Mice No – – – No [68]

Ferret Yesa – – – No

A/Vietnam/1194/2004 Cats Yesa N, G, E – Yes No [61]

A/Vietnam/1203/04 Mice Yes, ON, VN, FN N, G, E Yes Yes Yes [26,28,65,68,88]

Ferrets Yes, ON, VON, H N, G, E – Yes Yes [19,26,27,31,68,
69,74]

Hamsters Yesa – – – – [74]

A/Vietnam/1204/04 Mice Yesa – – – No [68]

Ferrets Yesa N – Yes Yes

A/Vietnam/UT3062/04 Ferret Yesa – – – – [74]

Hamsters Yesa – – – –

A/Thailand/16/2004 Mice Yesa – – – No [68]

Ferrets Yesa – – Yes No

A/Thailand/SP/83/2004 Mice No – – – No [68]

Ferrets Yesa – – No No

A/Thailand/Kan/353/2004 Ferret Yesa – – Yes Yes [68]

A/Chicken/Vietnam/NCVD/31/2004 Mice No – – – No [68]

Ferrets Yesa – – No No

A/birds/Qinghai/07/04 Mice Yesa – – Yes No [140]

A/Whooper swan/Mongolia/244/05 Mice Yesa N.S. – Yes – [26]

Ferrets Yesa – – – No

A/Muscovy duck/Vietnam/209/05 Mice Yesa N.S. – Yes Yes [26]

Ferret – – – – No

A/Vietnam/JP36-2/05 Ferret Yesa N – Yes Yes [69]

A/Indonesia/5/2005 Ferrets Yes, ON N, G, E – Yes Yes [20,25]
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Table 2. (continued)

Strain Species Neuroinvasion Neurotropism Neurovirulence Refs

Inflammatory
response

CNS
lesions

Neurological
signs

A/goose/Krasnoozerskoye/627/05 Mice Yesa – Yes – – [141]

A/turkey/Suzdalka/12/05 Mice Yesa – – – – [141]

A/Turkey/65-596/06 Ferret Yesa – – No No [69]

A/duck/Tuva/01/06 Mice Yesa – – – – [141]

A/chicken/Krasnodar/123/06 Mice Yesa – – – – [141]

A/chicken/Reshoty/02/06 Mice Yesa – – – – [141]

A/whooper
swan/Germany/R65-1/2006

Red fox Yesa N, G – Yes No [66]

A/great black-headed gull/Qinghai/1/
2009

Pika Yesa N – Yes – [57]

A/Vietnam/HN36285/2010 Cats Yesa N.S. – Yes No [142]

Dogs No - – No No

A/crow/India/02CA01/2012 Mice Yesa - – Yes - [63]

A/black-headed gull/Netherlands/29/
2017 (H5N6)

Ferret Yes, ON, TN N, G, E – Yes No [143]

aRoute of neuroinvasion is not specified.
bAll virus strains are H5N1 viruses unless otherwise indicated. Neurotropism is defined as positive signal IHC/ISH in defined cell type.
cAbbreviations: E, ependymal cells; FN, facial nerve; G, glial cells; H, hematogenous; N, neuron; N.S.; cell type not specified; ON, olfactory nerve; S, Schwann cells; TN,
trigeminal nerve; VN, vagus nerve; VON, vestibulocochlear nerve.
d
–, data not available.
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transport within axons of primary dorsal root ganglia neurons; yet, transsynaptic transmission of
viruses was not shown [28].

Neurovirulence
‘Neurovirulence’ refers to the ability of the virus infection to cause damage in the CNS that
contributes to the development of clinical disease, independent of the neuroinvasive and neurotropic
potential of the virus [18]. The neurovirulence of HPAI H5Nx virus infection is predominantly observed
and studied in cases where virus entered and spread through the CNS. However, HPAI H5Nx virus
infectionsmight also trigger neurological complications in the absence of neuroinvasion. Neurological
signs in HPAI H5Nx virus-infected mammals include ataxia, tremors, convulsions, paralysis,
and seizures and are observed in many mammalian species, including cats, tigers, and foxes
[13,47,60,67,73,79,80]. Whether there are differences in the (neuro)pathogenesis among infected
mammals is currently unknown (Tables 2 and 3).

In naturally infected mammals, neurological signs following HPAI H5Nx virus infection are often
observed, which might relate to the attention these animals attract due to atypical behaviors
such as ataxia, heightened aggression, or lack of fleeing behavior (Table 3). In humans, neurolog-
ical symptoms vary considerably, ranging from mild headache to severe symptoms such as
seizures and convulsions (Table 4). In vivo studies show that HPAI H5Nx neurovirulence is
determined in part by the route and dose of inoculation, as well as virus strain and infected animal
species (Table 2). For example, inoculation with A/Muscovy-duck/Vietnam/209/05 resulted in
neurological signs in mice, but not in ferrets [26]. However, what proportion of infections results
in severe neurological signs and how this specifically differs among mammalian species and
virus isolates are currently unknown (Figure 3).
Trends in Neurosciences, November 2023, Vol. 46, No. 11 959
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Table 3. Naturally HPAI H5Nx virus-infected mammals in which neuroinvasion and/or neurovirulence has been observedb,c

Year(s) and location of infection Species Neuroinvasion Neurotropism Neurovirulence Refs

CNS lesions Neurological signs

2003 – Thailand Tiger, leopard –d – Yes – [12]

2004 – Thailand Cat Yesa N Yes Yes [67]

2004 – Thailand Dog No – No – [144]

2004 – Thailand Tiger, leopard Yesa N Yes Yes [13]

2005 – Vietnam Civet Yesa N Yes Yes [145]

2006 – Germany Cat Yesa – – – [146]

2006 – Germany Stone marten Yesa N, G Yes Yes [70]

2013 – China Tiger Yesa – N.A. Yes [147]

2014/2015 – China Tiger – – Yes Yes [148]

2016/2017 – South Korea (H5N6) Cat Yesa N, G, E Yes Yes [73]

2020 – United Kingdom (H5N8) Seals Yesa N Yes Yes [71]

Red fox N, E No

2021 – The Netherlands Red fox Yesa N.A. – Yes [79]

2021 – Germany (H5N8) Harbor seal Yesa N, G Yes – [149]

2021/2022 – Finland Otter Yesa – Yes Yes [150]

Red fox No –

Lynx N.A.

2021/2022 – The Netherlands Red fox Yesa N, G Yes Yes [60]

2021/2022 – The Netherlands Red fox, polecat, badger, otter Yesa N Yes Yes [80]

2022 – Sweden Porpoise Yesa N, G, E Yes Yes [72]

2022 – Canada Red fox Yesa N.A. Yes Yes [47]

Mink, skunk – –

2022 – USA Seals – – – Yes [151]

2022 – Spain Mink – – – Yes [14]

2023 – Peru Sea lion – – – Yes [152]

2023 – Chile Sea lion – – Yes Yes [15]

2023 – USA Dolphin Yesa N Yes – [153]

aRoute of neuroinvasion is not specified.
bAll isolated viruses are H5N1 viruses unless otherwise indicated. Neurotropism is defined as positive signal IHC/ISH in defined cell type.
cAbbreviations: E, ependymal cells; G, glial cells; N, neuron; N.S., cell type not specified; S, Schwann cells.
d
–, data not available.
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The neurovirulence of HPAI H5Nx virus infection is associated with virus entry into and spread
throughout the CNS, as well as the resulting damage and inflammation. Infection of CNS cells can
result in cell death (via necrosis and/or apoptosis) and can incite an inflammatory response that
can lead to a dysregulated neuronal homeostasis. Inflammation is typically characterized by induction
of proinflammatory cytokines and chemokines, infiltration of inflammatory cells, activation of glial cells
(gliosis), and edema. Malacia and hemorrhage may be present in severe inflammatory lesions. Such
acute lesions in HPAI H5Nx virus-infected mammals typically colocalize with the presence of virus
antigen and are consistent with a diagnosis of viral encephalitis or meningoencephalitis [25,30].

Cell death of HPAI H5Nx virus-infected CNS cells has been observed in vitro and in vivo. In vitro,
apoptosis was induced by HPAI H5Nx viruses in human astrocyte-like cells and primary mouse
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Figure 2. Anatomical locations with confirmed highly pathogenic avian influenza (HPAI) H5Nx virus detection in
the mammalian brain. HPAI H5Nx viruses are detected in different anatomical locations within the brain. Here, all locations
in which virus antigen has been detected in experimentally or naturally infected mammals are projected on a schematic
overview of the human brain. Figure created with Biorender.
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microglia and astrocytes [53,55]. Apoptosis might be triggered by upregulation of genes involved
in interferon (IFN)-α/β signaling, Toll-like/RIG-I-like receptor signaling pathways, or elevation of in-
ternal Ca2+ in human astrocyte-like cells [53]. In vivo, HPAI H5Nx virus infection triggers neuronal
degradation and cell death [20,29].

Infection of various brain cells with HPAI H5Nx virus elicits an immune response that can
cause dysregulation of the brain homeostasis. These immune responses can trigger influx of
immune cells to the site of inflammation or dysregulated neuronal plasticity by changing synapse
structure and function [81,82]. In vitro HPAI H5N1 infection of neuron-like cell lines, hiPSC-
derived neural models, or primary CNS cells results in the induction of proinflammatory cytokines
such as type I IFN, type III IFN, IFN-γ-induced protein 10 (IP-10), interleukin-1β (IL-1β), IL-6, IL-8,
and tumor necrosis factor-α (TNF-α) [53,55,56,83,84]. In vivo, experimental infection of ferrets with
influenza A viruses induced TNF-α, IL-6, and IL-8 in endothelial cells, neurons, and glial cells in the
CNS [85–87]. Cell and tissue damage colocalizes with an influx of inflammatory cells, which may
includemonocytes, macrophages, lymphocytes, plasma cells, and neutrophils [20,24,29]. Further-
more, HPAI H5Nx virus infection elicits a prominent IP-10 response in the CNS [28,88], which is a
chemoattractant for immune cells such as monocytes, macrophages, and dendritic cells and
weakens the integrity of the BBB [89]. However, how each of these chemokines and cytokines
contribute to the development of neuroinflammation or clinical disease is not fully understood,
even though it is known that, for example, type I IFN can cause headaches [90].

Additionally, influenza A virus infections can disturb the brain homeostasis through alterations in
hippocampal neuron morphology and neuronal connectivity [91]. This can be attributed to virus
replication within CNS cells but also to local immune responses. Cytokines such as IL-1β, IL-6,
and TNF-α emerge as important cytokines that disrupt the baseline physiology of synapses [82].
Unlike IL-6, which dampens neural activity in the CA1 region of the hippocampus [92], IL-1β and
TNF-α can enhance excitatory as well as inhibitory neurotransmission through decreasing or
enhancing the flow of Na+, K+, or Ca2+ ions [93–98]. All three cytokines have been linked to
seizures and memory and learning deficits in various models of epilepsy, multiple sclerosis, and
neurodegeneration [99–102]. HPAI H5Nx virus infection in an astrocyte-like cell line changed
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Table 4. Human cases of HPAI H5Nx virus infection in which neuroinvasion and/or neurovirulence has been observedc,d

Year(s) and location of infection Age, sex Neuroinvasion Neurotropism Neurovirulence Outcome Refs

CNS lesions Neurological
symptoms

1997 – Hong Kong 13F No – Yes Yes Fa [154,155]

25F –
e Fa

24F – R

2003/2004 – Thailand 6M Yes – Yesa No Fa [156,157]

2004 – Vietnam 4M Yes – – Yes Fa [158]

2004/2005 – Vietnam, Thailand, Cambodia 5 patientsb – – – Yes – [159]

2005 – Indonesia 8F – – – Yes Fa [160]

21M R

2005 – Cambodia 4 patientsb – – – Yes – [161]

2005 – Ho Chi Minh City 1 patientb – – – Yes – [159]

2005 – China 24F – – – Yes Fa [77]

35M Yes N No

2005/2008 – China 4 patientsb – – – Yes – [162]

2005/2006 – Indonesia 7 patientsb – – – Yes – [159]

2005/2006 – Turkey 1 patientb – – – Yes – [163]

2006 – Azerbaijan, Turkey 7 patientsb – – – Yes – [159]

2006/2007 – Egypt 19 patientsb – – – Yes – [159]

2008 – China 42M Yes N, G Yes No Fa [76]

2012 – China 2M Yes – Yes Yes R [164]

2013 – Canada 28F Yes – Yes Yes Fa [165]

2022 – China (H5N6) 6F Yes – Yes Yes R [166]

aAlso induction of proinflammatory cytokines.
bAge and sex unknown.
cAll isolated viruses are H5N1 viruses unless otherwise indicated. Neurotropism is defined as positive signal IHC/ISH in defined cell type.
dAbbreviations: E, ependymal cells; F, female; Fa, fatal; G, glial cells; M, male; N, neuron; N.S., cell type not specified; R, recovered; S, Schwann cells.
e
–, data not available.
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expression profiles of genes associated with neuroactive ligand–receptor interaction and internal
Ca2+, important for neuron-to-neuron signaling transduction and synaptic plasticity [53].
Nonstructural protein 1 (NS1) of HPAI H5Nx virus interacts with postsynaptic density protein 95
(PSD95), which reduces nitric oxide (NO) levels [103]. In vivo studies in mice described accumula-
tion of α-synuclein in the olfactory bulb, hippocampus, locus coeruleus, and solitary nucleus up to
90 days after infection [28]. These data together suggest that HPAI H5Nx viruses disrupt neural
homeostasis, which might contribute to the development of neurodegenerative diseases.

To summarize, HPAI H5Nx viruses, unlike seasonal or pandemic influenza A viruses, are highly
neurovirulent in many mammalian species. The neurovirulence caused by the high neuroinvasive
and neurotropic potential of HPAI H5Nx viruses, together with the induction of systemic cyto-
kines, can contribute to the development of severe neurological signs, including behavior
changes such as lack of fleeing behavior and aggression. Several studies suggest that HPAI
H5Nx virus infection can result in milder CNS complications when the virus does not enter
the CNS or when virus replication within the CNS is quickly controlled, but how this modulates
behavioral outcomes or neurological symptoms is not well understood. The exact types and
frequencies of neurological complications associated with HPAI H5Nx infection as well as the
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Figure. 3. Disease pyramid of the neurological signs associated with highly pathogenic avian influenza (HPAI)
H5Nx virus infections in mammals. (A) Factors that influence neuroinvasion and neurotropism of HPAI H5Nx viruses.
(B) The distribution of neurological disease and symptom severity following HPAI H5Nx virus infection is largely unknown.
The neurovirulence of the virus can be broadly divided into four categories, ranging from no symptoms to severe
symptoms. Figure created with Biorender.
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temporal and spatial kinetics of the neurovirulence of HPAI H5Nx viruses are not fully understood
(see Figure 3 and Outstanding questions).

Viral factors that contribute to neuropathogenesis
There is currently limited understanding of viral factors that contribute to the neuropathogenesis
of HPAI H5Nx viruses. Even though several studies identified viral factors that contribute to the
replication efficiency in mammals, or transmission among them, these rarely investigate the
contribution of these factors to neuropathogenesis (see Outstanding questions). However, it is
known that the neuropathogenesis of HPAI H5Nx viruses cannot be attributed to a single viral
protein.

Sialic acid binding preference
HPAI H5Nx viruses bind preferentially to α(2,3) SIA, but whether the recognition of specific
SIA contributes to neuroinvasion and neurotropism is currently unknown. Viruses that
recognize either α(2,3)- or α(2,6)-linked SIA attach to the olfactory mucosa of humans and ferrets.
Furthermore, ferret studies have shown that both viruses that recognize α(2,3)- or α(2,6)-linked
SIA are able to replicate within the olfactory mucosa, suggesting that SIA preference is not a
major determinant in the ability to infect and replicate in cells of the olfactory mucosa [20,104].
Within the olfactory mucosa, highly polysialylated OSNs protrude through the submucosa into
the environment where influenza A virus particles can directly attach and bind (Figure 1). However,
which SIAs are specifically expressed on cilia of OSN is unknown [105]. The nerve endings of
other CNs are mainly in contact with respiratory epithelial cells that express α(2,6) SIA and are
therefore predominantly target cells for seasonal and pandemic influenza viruses [61,106]. With
regard to the neurotropism, HPAI H5N1 virus [which binds α(2,3) SIA], attached and replicated
more efficiently in neuron and astrocyte-like cell lines than viruses that recognized α(2,6)-linked
SIA (pH1N1 and H3N2) [52]. These data suggest that the recognition of α(2,3)-linked SA might
not play an important role in the neuroinvasive potential of HPAI H5Nx viruses, but that it might
contribute to neurotropism.

Multibasic cleavage site
The HA proteins of HPAI viruses, including HPAI H5Nx viruses, contain a multibasic cleavage site
(MBCS). The MBCS allows HA cleavage and activation by ubiquitously expressed proteases.
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This is in contrast to the monobasic cleavage site of LPAI, seasonal and pandemic influenza
viruses that are cleaved by specific trypsin-like serine proteases such as human airway trypsin-
like protease (HAT), transmembrane serine protease 2 (TMPRSS2), TMPRSS4 or matriptases,
which are not ubiquitously expressed [107–109]. The presence of the MBCS coincides
with the systemic spread of HPAI viruses in birds, especially poultry species, and likely
also in mammals [110]. In ferrets, the MBCS is critical for the neuroinvasion of HPAI
H5N1 virus along the olfactory nerve. Deletion of the MBCS from H5N1/Indonesia/2005
virus prevented virus invasion into the CNS in ferrets, likely because replication within the
olfactory mucosa was less efficient than H5N1/Indonesia/2005 with an MBCS [20]. How-
ever, the MBCS alone is not sufficient for neuroinvasion, as the insertion of a MBCS in a
seasonal H3N2 virus did not increase the neuroinvasive potential in ferrets [111]. In mice
and ferrets, virus spread to the CNS was not consistently observed after inoculation with dif-
ferent HPAI H7 viruses [112].

The presence of an MBCS in HPAI H5Nx viruses also contributes to the neurotropism. In vitro
studies showed that H5N1/Indonesia/2005 both with and without the MBCS replicates in
neuron-like cell lines and primary mouse cortex cells, although H5N1/Indonesia/2005 without
the MBCS replicated less efficiently, despite replicating equally efficiently in MDCK cells [52].
Together, these studies indicate that the presence of MBCS contributes to the neuroinvasive
and neurotropic potential of HPAI viruses, but the presence of a MBCS alone is not sufficient
for neuroinvasion nor neurotropism.

Polymerase genes
The replication efficiency of influenza A viruses in mammalian cells is largely dependent on
the viral polymerase genes PB1, PB2, and PA. A genetic screen has shown that mutations
that increase polymerase activity in HPAI H5Nx viruses, like a single amino acid substitution
in PB1 (N105S) or PB2 (E192K, Q591K, E627K, D701N or D701V), increase replication in
the nasal turbinates, which correlated with higher virus titers in the brains of inoculated
mice [113]. How these amino acid substitutions directly relate to the neuropathogenesis of
HPAI H5Nx virus is not known. The E627K amino acid substitution in PB2 is one of the
best studied in the light of mammalian adaptation, but in mice and ferrets, the E627K substi-
tution also increases the neuroinvasive potential [54,68,114]. Furthermore, the acquisition of
627K, or other amino acid substitutions that increase polymerase activity (PB1-117G and
635T), within the CNS has been observed in naturally infected foxes and experimentally inoc-
ulated ferrets [30,60,80]. Together, these studies suggest that an increased polymerase ac-
tivity might influence the neuroinvasive and neurotropic potential, possibly through more
efficient replication.

Other factors contributing to neuropathogenesis
PB1-F2: Within the PB1 gene segment, an alternative start codon gives rise to the PB1-F2 protein.
Amino acid position 66 in PB1-F2 was shown to be associated with increased neuroinvasion and
neurotropism. In experimentally inoculated mice and ferrets, amino acid substitution N66S in PB1
increases the neuropathogenicity of HPAI H5N1 virus [115], most likely through suppression of the
type I IFN response [116].

NS1: The nonstructural protein NS1 antagonizes the host innate immune responses through
interacting with multiple host proteins [117]. One of these host proteins is cleavage and
polyadenylation specificity factor 30 (CPSF30), a cellular factor required for processing of
cellular pre-mRNA [118]. NS1 amino acid residues at position 103 and 106 are critical for a
stronger interaction with CPSF30, which was associated with a faster spread of HPAI
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Outstanding questions
Many mammalian species infected
with HPAI H5Nx viruses develop neu-
rological disease, but it remains un-
known how often infection results in
neuroinvasion and neurological dis-
ease and whether this differs among
mammalian species. What is the fre-
quency of virus invasion into the CNS
in different mammalian species, includ-
ing humans?

Neurological disease observed in HPAI
H5Nx virus-infected mammals is often
severe or even fatal. This might only re-
flect ‘the tip of the iceberg’, and it is
likely that less severe neurological dis-
ease occurs unnoticed in at least
some mammalian species. What is
the spectrum of neurological disease
in different mammalian species?

Differences in neuropathogenesis are
observed among different isolates of
the HPAI H5Nx Gs/Gd lineage viruses.
Under similar experimental conditions,
some viruses cause neurological dis-
ease in mammals, whereas others do
not. Which viral factors and phenotypic
characteristics are necessary, or es-
sential, for the neuroinvasive, neuro-
tropic, and neurovirulent potential of
HPAI H5Nx viruses?

HPAI H5Nx viruses show a broad
neurotropism infecting different CNS
cells, resulting in a proinflammatory
response in the CNS. What cell
types and which cell-intrinsic and
cell-autonomous mechanisms con-
tribute to CNS disease?

Individual studies have revealed
that vaccination or antiviral therapies
can potentially interfere with the
neuroinvasion into and spread of
HPAI H5Nx viruses through the
CNS, but this has not been studied
comprehensively. Can intervention
strategies be used to prevent or
treat neurological disease caused by
HPAI H5Nx viruses?
H5N1 virus, especially in CNS cells [119]. In vitro evidence suggests that overexpression of
NS1 derived from HPAI H5N1, but not pH1N1 virus, affects synaptic plasticity in rat neurons
[120], most likely by interacting with PSD-95, a scaffold protein localized at the postsynaptic
density [103].

Intervention strategies and treatment options
In view of the sensitivity of H5Nx viruses to neuraminidase inhibitors and the lack of approved
vaccines, the CDCiii and the WHOiv recommend use of neuraminidase inhibitors. However, the
efficacy of this approach in humans to prevent or treat neurological complications is poorly
characterized. Hints on the efficacy of potential therapeutic intervention strategies, such as
vaccination or antivirals, to prevent neurological disease can be found in preclinical studies.
Mouse and ferret studies, for instance, have shown that vaccination with a homologous
HPAI H5 vaccine prevented or reduced HPAI H5Nx virus neuroinvasion via the olfactory
nerve [29]. Virus replication in the olfactory mucosa was less abundant or even absent in vac-
cinated ferrets, suggesting that vaccination limits virus spread to the CNS along the olfactory
nerve [29]. Whether protective responses induced by the vaccine are effective, and how
broad they are, is not well known and needs further investigation. Of note, a heterologous
H3N2 vaccination did not prevent HPAI H5N1 virus neuroinvasion into the CNS in ferrets
[25]. A comprehensive comparison of different vaccination strategies should reveal the optimal
strategy to prevent CNS invasion by different HPAI H5Nx virus isolates. Combining virological,
immunological, and pathological analyses in these studies could provide important insights into
the correlates of protection.

Differences in antiviral effectiveness, dose regimens, and virus isolates were observed across
various studies. In one ferret study, prophylactic oseltamivir did not prevent HPAI H5N1 virus
replication in the olfactory mucosa, neuroinvasion, or virus spread throughout the CNS [29].
However, other studies revealed a reduction in virus titers or spread in the brain and neurological
signs [121,122], and in mice, baloxavir marboxil did reduce virus titers in the CNS [123]. Future
studies should reveal the potential of antivirals to prevent CNS invasion or reduce virus replication
within the CNS, as well as efficient dosing regimens. These studies should assess the bioavailabil-
ity of the different antivirals in different anatomical locations in the CNS, as, for example,
oseltamivir, one of the most frequently used antivirals against influenza, has low bioavailability in
the CNS [124,125].

Altogether, comprehensive studies should reveal the efficacy of vaccines and antivirals to prevent
invasion and virus replication in the CNS (see Outstanding questions). As the majority of studies
so far focus on the reduction of virus replication in the lungs, future studies should include analy-
ses of the olfactory mucosa and different anatomical parts of the CNS. These studies have a
broad impact in the context of pandemic preparedness and should complement the focus on
treatment of HPAI H5Nx virus infections, as neurological disease has been associated with
past influenza A virus pandemics.

Concluding remarks
The global spread of HPAI H5Nx viruses of the Gs/Gd lineage in wild birds is a unique event that
affects not only birds but also mammals. Since 2021, sustained circulation of HPAI H5Nx
viruses in wild bird populations has resulted in a tremendous increase of infected bird species
as well as transmission events to mammalian species. Transmission to mammals, presumably
after feeding on sick or dead birds, and the high frequency of neurological diseases in these
mammals, raises concerns. In humans, HPAI H5Nx viruses have also been associated with
neurological disease, but the exact risk for neurological disease after infection with currently
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circulating HPAI H5Nx viruses, and whether this is lower than other mammals, is not known
(see Outstanding questions).

In mammals, the development of HPAI H5Nx virus-associated neurological disease can occur
without any evidence of respiratory disease. For example, virus replication within the olfactory
mucosa can result in neuroinvasion and spread throughout the CNS, without virus replication
in other parts of the upper or lower respiratory tract. This comes with diagnostic challenges,
as respiratory samples can test negative, despite efficient virus replication in the CNS. Therefore,
it is important to increase awareness among veterinarians, health care workers, and neurologists
to be vigilant about HPAI H5Nx viruses causing neurological disease, without the presence of
overt respiratory disease [42].

The spectrum of CNS disease associated with HPAI H5Nx infection in different mammalian
species remains unclear (Figure 3). It is likely that only those cases that develop severe disease
from a HPAI H5Nx virus infection are documented with the current surveillance systems and that
HPAI H5Nx virus infections that result in less severe disease are missed. A recent study in the
Netherlands revealed that HPAI H5N1 virus infections were detected in carnivores without
obvious neurological signs or morbidity, with serological evidence for infection in about 20% of the
study population [126]. Similarly, limited human data suggest that only few cases of severe enceph-
alitis occur, but milder neurological complications are frequently detected (Table 4). Although the
disease pyramid for neurological disease is influenced by virus strain, virus dose, exposure route,
and the species infected, it is important to acquire more insight into the diversity of CNS complica-
tions, as well as the frequency of these complications (Figure 3). Furthermore, it is currently unclear
which host factors influence the neuropathogenesis, and thus contribute to differences among
species. Finally, long-term effects of HPAI H5Nx virus infection need to be studied. It is likely that
encephalitis will result in long-lasting neurological deficits, such as those observed after West Nile
virus and severe acute respiratory syndrome coronavirus 2 infections [18,127].

A comprehensive understanding of the phenotypic and genotypic characteristics of HPAI H5Nx
viruses that contribute to the development of neurological disease is urgently needed. Several virus-
intrinsic features have been associated with the neuropathogenesis of influenza A viruses, such as
the recognition of α(2,3)-linked SIAs, the presence of a MBCS, and an increased polymerase activity.
However, none of these are solely responsible for the neuroinvasive, neurotropic, and neurovirulent
potential of HPAI H5Nx viruses. In vivo and in vitro models are indispensable to identify viral factors
that contribute to or are essential for the neuroinvasion, neurotropism, and neurovirulence. Scalable
in vitro hiPSC-derived neural models are particularly useful tools to investigate virus–neural cell interac-
tions in detail, as well as to characterize the neurotropic and neurovirulent potential of newly emerging
H5Nx and other viruses in a human-related model system.

To conclude, HPAI H5Nx viruses are unique among influenza A viruses in their neuroinvasive
potential, their efficient replication within the CNS, and their potential to cause severe CNS
disease in mammals.With the continuous circulation of HPAI H5Nx viruses worldwide, mammals,
including humans, are at risk of being infected. Although sustained transmission among
mammals infected with HPAI H5Nx viruses is rare, it is critical to monitor the spread of this
virus. A collaborative One Health approach is required to gain insights into the frequency and
the full spectrum of neurological disease in humans and animals and to identify viral factors that
contribute to the neuropathogenicity of HPAI H5Nx viruses. Finally, awareness should be raised
among animal and human health care workers regarding neurological complications associated
with HPAI H5Nx viruses and the potential of these neurological manifestations to occur in the
absence of respiratory disease.
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