Stanford Study on Salinity of Deep Groundwater

Dan Industry News Release, Water

From: Proceedings of the National Academy of Sciences of the United States of Americapnas-header-logo salinity

Salinity of deep groundwater in California: Water quantity, quality, and protection

by Mary Kanga,1 and Robert B. Jacksona,b,c
Author Affiliations

For more on the study, including a video from a Stanford researcher, see: More Groundwater Found in Central Valley

Significance

Groundwater withdrawals are increasing across the United States, particularly in California, which faces a growing population and prolonged drought. Deep groundwater aquifers provide an alternative source of fresh and saline water that can be useable with desalination and/or treatment. In the Central Valley alone, fresh groundwater volumes can be increased almost threefold, and useable groundwater volumes can be increased fourfold if we extend depths to 3,000 m. However, some of these deep groundwater resources are vulnerable to contamination from oil/gas and other human activities. Our findings provide the first estimates, to our knowledge, of underground sources of drinking water depths and volumes in California and show the need to better characterize and protect deep groundwater aquifers.

Abstract

Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond.
Read more.